Issue 14, 2015

High performance colored selective absorbers for architecturally integrated solar applications

Abstract

Architecturally integrated solar thermal technologies such as solar water heaters and solar thermoelectric generators (STEGs) rely on spectrally selective solar absorbers. These solar absorbers need to have simultaneous high solar absorptivity (α) and low thermal emissivity (ε), which always makes them look dark blue or black and so blocks architectural integrated solar applications. A colorful appearance should be taken into account for integration into architectural applications. Herein, colored absorbers with a TiNxOy absorbing layer and a TiO2/Si3N4/SiO2 dielectric stack are elaborately designed and can be fabricated with only two targets, Ti and Si, by using reactive magnetron sputtering. Both the theoretical and experimental results show that the color can be tuned a huge amount, while keeping solar absorptivity higher than 95% and thermal emissivity lower than 5%. The highest absorptivity and energy efficiency (α/ε) values are 97.6% and 27.2, respectively. These materials can also be fabricated onto thermoelectric generators to demonstrate the conversion of solar energy into electricity. The open circuit voltage dramatically increases from 171 mV to 523 mV (3.1 times) when using the absorbers. Additionally, the colored solar absorbers can be deposited onto most types of substrate, even flexible substrates. They can simultaneously satisfy the aesthetic requirements and excellent energy performance required for architecturally integrated solar thermal and thermoelectric applications, as well as applications in other fields.

Graphical abstract: High performance colored selective absorbers for architecturally integrated solar applications

Article information

Article type
Paper
Submitted
28 Jan 2015
Accepted
23 Feb 2015
First published
25 Feb 2015

J. Mater. Chem. A, 2015,3, 7353-7360

Author version available

High performance colored selective absorbers for architecturally integrated solar applications

F. Chen, S. Wang, X. Liu, R. Ji, L. Yu, X. Chen and W. Lu, J. Mater. Chem. A, 2015, 3, 7353 DOI: 10.1039/C5TA00694E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements