Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes†
Abstract
The effects of a phosphate buffer electrolyte and surface modification with thin conductor layers on the photoelectrochemical properties of CdS and Pt-modified polycrystalline Cu(In,Ga)Se2 (CIGS) photocathodes were investigated. The photocurrent obtained from Pt/CdS/CIGS electrodes, in which the CIGS layer was fabricated by co-evaporation using a three stage method, clearly increased in a phosphate buffer electrolyte solution as a result of promotion of the hydrogen evolution reaction. The half-cell solar-to-hydrogen efficiency (HC-STH) of this device reached a maximum of 5.4% at 0.30 VRHE even under neutral conditions. Furthermore, significant enhancement of the hydrogen evolution reaction on a CIGS photocathode by surface modification with thin conductor layers was observed. The enhancement was due to the promoted charge transfer between the underlying photocathode and water through the Pt catalyst. The HC-STH of a CIGS photocathode modified with a conductive Mo/Ti layer (Pt/Mo/Ti/CdS/CIGS) was as high as 8.5% at 0.38 VRHE, a value that exceeds those previously reported for photocathodes based on polycrystalline thin films.
- This article is part of the themed collection: 2015 Journal of Materials Chemistry A Hot Papers