Issue 22, 2015

Two-step self-assembly of hierarchically-ordered nanostructures

Abstract

Due to their unique size- and shape-dependent physical and chemical properties, highly hierarchically-ordered nanostructures have attracted great attention with a view to application in emerging technologies, such as novel energy generation, harvesting, and storage devices. The question of how to get controllable ensembles of nanostructures, however, still remains a challenge. This concept paper first summarizes and clarifies the concept of the two-step self-assembly approach for the synthesis of hierarchically-ordered nanostructures with complex morphology. Based on the preparation processes, two-step self-assembly can be classified into two typical types, namely, two-step self-assembly with two discontinuous processes and two-step self-assembly completed in one-pot solutions with two continuous processes. Compared to the conventional one-step self-assembly, the two-step self-assembly approach allows the combination of multiple synthetic techniques and the realization of complex nanostructures with hierarchically-ordered multiscale structures. Moreover, this approach also allows the self-assembly of heterostructures or hybrid nanomaterials in a cost-effective way. It is expected that widespread application of two-step self-assembly will give us a new way to fabricate multifunctional nanostructures with deliberately designed architectures. The concept of two-step self-assembly can also be extended to syntheses including more than two chemical/physical reaction steps (multiple-step self-assembly).

Graphical abstract: Two-step self-assembly of hierarchically-ordered nanostructures

Article information

Article type
Highlight
Submitted
12 Feb 2015
Accepted
30 Apr 2015
First published
30 Apr 2015

J. Mater. Chem. A, 2015,3, 11688-11699

Author version available

Two-step self-assembly of hierarchically-ordered nanostructures

Q. Liu, Z. Sun, Y. Dou, J. H. Kim and S. X. Dou, J. Mater. Chem. A, 2015, 3, 11688 DOI: 10.1039/C5TA01162K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements