Issue 23, 2015

Ruddlesden Popper oxides of LnSr3Fe3O10−δ (Ln = La, Pr, Nd, Sm, Eu, and Gd) as active cathodes for low temperature solid oxide fuel cells

Abstract

Ruddlesden Popper type oxides of LnSr3Fe3O10−δ (Ln = La, Pr, Nd, Sm, Eu, and Gd) have been investigated as active cathodes for solid oxide fuel cells (SOFCs). Among the examined LnSr3Fe3O10−δ, it was found that PrSr3Fe3O10−δ shows the highest activity for the cathode reaction. The prepared LnSr3Fe3O10−δ oxides have a tetragonal crystal structure with the space group I4/mmm. With decreasing the ionic size of Ln3+, the unit cell volume and crystallite size decrease. The temperature and PO2 dependences of electrical conductivities indicate the metal-like behaviour and the predominant hole conduction. The thermal expansion coefficient (TEC) values derived from the non-linear expansion curves of LnSr3Fe3O10−δ are reasonably compatible with those of La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte. The catalytic activity as cathodes for H2-SOFCs depended on Ln ions. A high cathodic activity was achieved on PrSr3Fe3O10−δ (PSFO10) and a maximum power density of 0.51 W cm−2 was achieved at 1073 K when 0.3 mm thick LSGM electrolyte was used. The surface exchange coefficient, k, also confirms the high activity for the dissociation of oxygen on PSFO10. Therefore, PrSr3Fe3O10−δ is highly promising as a cathode for low temperature SOFCs.

Graphical abstract: Ruddlesden Popper oxides of LnSr3Fe3O10−δ (Ln = La, Pr, Nd, Sm, Eu, and Gd) as active cathodes for low temperature solid oxide fuel cells

Article information

Article type
Paper
Submitted
16 Feb 2015
Accepted
03 May 2015
First published
20 May 2015

J. Mater. Chem. A, 2015,3, 12357-12366

Author version available

Ruddlesden Popper oxides of LnSr3Fe3O10−δ (Ln = La, Pr, Nd, Sm, Eu, and Gd) as active cathodes for low temperature solid oxide fuel cells

S. Chaianansutcharit, K. Hosoi, J. Hyodo, Y.-W. Ju and T. Ishihara, J. Mater. Chem. A, 2015, 3, 12357 DOI: 10.1039/C5TA01273B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements