Issue 22, 2015

Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction

Abstract

In this study, low-mass loadings (ca. 5 wt%) Pt/C catalysts were synthesized using the carbonyl chemical route allowing for the heterogeneous deposition of Pt nanoparticles on different carbon-based substrates. N-doped reduced graphene oxide, reduced graphene oxide, graphene oxide, graphite and Vulcan XC-72 were used for the heterogeneous deposition of Pt nanoparticles. The effect of the chemical nature of the carbon-based substrate on the Oxygen Reduction Reaction (ORR) kinetics at Pt nanoparticles surfaces was investigated. XPS results show that using N-doped reduced graphene oxide materials for the deposition of Pt nanoparticles leads to formation of Pt–N chemical bonds. This interaction between Pt and N allows for an electronic transfer from Pt to the carbon support. It is demonstrated that ca. 25% of the total amount of N atoms were bound to Pt ones. This chemical bond also revealed by the DFT analysis, induces changes in the oxygen adsorption energy at the platinum surface, engendering an enhancement of the catalyst activity towards ORR. In comparison with Vulcan XC-72, the mass activity at 0.9 V vs. RHE is 2.1 fold higher when N-doped reduced graphene oxide is used as substrate. In conjunction with the experimental results, DFT calculations describe the interaction between supported platinum clusters and oxygen where the support was modelled accordingly with the carbon-based materials used as substrate. It is demonstrated that the presence of N-species in the support although leading to a weaker O2 adsorption, induces elongated O–O distances suggesting facilitated dissociation. Additionally, it is revealed that the strong interaction between Pt clusters and N-containing substrates leads to very slight changes of the cluster–substrate distance even when oxygen is adsorbed at the interfacial region, thus leading to a lower resistance for electron charge transfer and enabling electrochemical reactions.

Graphical abstract: Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2015
Accepted
30 Apr 2015
First published
01 May 2015

J. Mater. Chem. A, 2015,3, 11891-11904

Author version available

Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction

J. Ma, A. Habrioux, Y. Luo, G. Ramos-Sanchez, L. Calvillo, G. Granozzi, P. B. Balbuena and N. Alonso-Vante, J. Mater. Chem. A, 2015, 3, 11891 DOI: 10.1039/C5TA01285F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements