Issue 24, 2015

The effect of energetically coated ZrOx on enhanced electrochemical performances of Li(Ni1/3Co1/3Mn1/3)O2 cathodes using modified radio frequency (RF) sputtering

Abstract

To date, most coating layers for electrode materials for Li-ion batteries have been fabricated using the sol–gel method or atomic layer deposition (ALD), which involve complicated processing steps and limited candidates for coating materials. With an emphasis on solving these issues, herein, a new coating methodology based on a sputtering system was developed, and sputtered zirconium oxide was coated on Li(Ni1/3Co1/3Mn1/3)O2 (L333) cathode powders. The continuous movement of the cathode powders during the coating procedure and the high kinetic energy from the sputtering process resulted in a highly uniform coating layer with multiple structures exhibiting a concentration and valence state gradient of Zr, i.e., surface (mainly Zr4+) and doped (mainly Zr2+) layers. The ZrOx-coated L333 powders exhibited an outstanding capacity retention (96.3% at the 200th cycle) and superior rate capability compared with the uncoated version in a coin cell with 1 M LiPF6 in EC : DEC liquid electrolyte. The ZrOx-coated L333 powders also exhibited an enhanced specific capacity in a solid state battery cell with a sulfide-based inorganic solid-state electrolyte. The improved electrochemical performance of ZrOx/L333 was attributed to the synergetic effect from the surface and doped layers: physical/chemical protection of the active material surface, enhancement of Li-ion diffusion kinetics, and stabilization of the interfaces.

Graphical abstract: The effect of energetically coated ZrOx on enhanced electrochemical performances of Li(Ni1/3Co1/3Mn1/3)O2 cathodes using modified radio frequency (RF) sputtering

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2015
Accepted
11 May 2015
First published
11 May 2015

J. Mater. Chem. A, 2015,3, 12982-12991

Author version available

The effect of energetically coated ZrOx on enhanced electrochemical performances of Li(Ni1/3Co1/3Mn1/3)O2 cathodes using modified radio frequency (RF) sputtering

J. Lee, J. W. Kim, H. Kang, S. C. Kim, S. S. Han, K. H. Oh, S. Lee and Y. Joo, J. Mater. Chem. A, 2015, 3, 12982 DOI: 10.1039/C5TA02055G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements