Hierarchical i–p and i–n porous heterojunction in planar perovskite solar cells†
Abstract
A hierarchical pore network in planar CH3NH3PbI3 perovskite is demonstrated herein. Quantitative characterizations by grazing incidence small angle X-ray scattering (GISAXS) with modeling and complementary microscopic observations provide insight at various length scales. It is a pore structure comprised of nano-scaled primary pores aggregating into meso-scaled fractal networks within the perovskite layer. Its structural evolution and mechanistic interpretation are explored with respect to different preparation methods/steps. The time-of-flight secondary ion mass spectrometer (TOF-SIMS) results suggest the infiltration of hole transporting materials (HTM) or electron transporting materials (ETM) deposited on top at different length scales. The inter-penetrating perovskite/HTM or perovskite/ETM form i–p or i–n one-sided porous heterojunctions, respectively, over the typically regarded planar-stacked heterojunction. They show distinctive photovoltaic characteristics and behaviors in which the large i–n interfaces at the nanoscale lead to highly efficient, hysteresis-free and reliable solar cell devices. The morphology–performance correlation is helpful for associated design of device architecture and processing toward higher efficiency and stability.