Improved capacity and stability of integrated Li and Mn rich layered-spinel Li1.17Ni0.25Mn1.08O3 cathodes for Li-ion batteries
Abstract
A Li-rich layered-spinel material with a target composition Li1.17Ni0.25Mn1.08O3 (xLi[Li1/3Mn2/3]O2.(1 − x)LiNi0.5Mn1.5O4, (x = 0.5)) was synthesized by a self-combustion reaction (SCR), characterized by XRD, SEM, TEM, Raman spectroscopy and was studied as a cathode material for Li-ion batteries. The Rietveld refinement results indicated the presence of monoclinic (Li[Li1/3Mn2/3]O2) (52%), spinel (LiNi0.5Mn1.5O4) (39%) and rhombohedral LiNiO2 (9%). The electrochemical performance of this Li-rich integrated cathode material was tested at 30 °C and compared to that of high voltage LiNi0.5Mn1.5O4 spinel cathodes. Interestingly, the layered-spinel integrated cathode material exhibits a high specific capacity of about 200 mA h g−1 at C/10 rate as compared to 180 mA h g−1 for LiNi0.5Mn1.5O4 in the potential range of 2.4–4.9 V vs. Li anodes in half cells. The layered-spinel integrated cathodes exhibited 92% capacity retention as compared to 82% for LiNi0.5Mn1.5O4 spinel after 80 cycles at 30 °C. Also, the integrated cathode material can exhibit 105 mA h g−1 at 2 C rate as compared to 78 mA h g−1 for LiNi0.5Mn1.5O4. Thus, the presence of the monoclinic phase in the composite structure helps to stabilize the spinel structure when high specific capacity is required and the electrodes have to work within a wide potential window. Consequently, the Li1.17Ni0.25Mn1.08O3 composite material described herein can be considered as a promising cathode material for Li ion batteries.
- This article is part of the themed collection: 2015 Journal of Materials Chemistry A Hot Papers