Issue 37, 2015

Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications

Abstract

Graphene, an atomically thin two-dimensional carbonaceous material, has attracted tremendous attention in the scientific community, due to its exceptional electronic, electrical, and mechanical properties. Indeed, with the recent explosion of methods for a large-scale synthesis of graphene, the number of publications related to graphene and other graphene based materials has increased exponentially. Particularly the development of easy preparation methods for graphene like materials, such as highly reduced graphene oxide (HRG) via reduction of graphite oxide (GO), offers a wide range of possibilities for the preparation of graphene based inorganic nanocomposites by the incorporation of various functional nanomaterials for a variety of applications. In this review, we discuss the current development of graphene based metal and metal oxide nanocomposites, with a detailed account of their synthesis and properties. Specifically, much attention has been given to their wide range of applications in various fields, including electronics, electrochemical and electrical fields. Overall, by the inclusion of various references, this review covers in detail the aspects of graphene-based inorganic nanocomposites.

Graphical abstract: Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications

Article information

Article type
Review Article
Submitted
27 Mar 2015
Accepted
10 Jun 2015
First published
11 Jun 2015

J. Mater. Chem. A, 2015,3, 18753-18808

Author version available

Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications

M. Khan, M. N. Tahir, S. F. Adil, H. U. Khan, M. R. H. Siddiqui, A. A. Al-warthan and W. Tremel, J. Mater. Chem. A, 2015, 3, 18753 DOI: 10.1039/C5TA02240A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements