Issue 37, 2015

Homodiamine-functionalized metal–organic frameworks with a MOF-74-type extended structure for superior selectivity of CO2 over N2

Abstract

A porous Mg2(dondc) framework (H4dondc = 1,5-dioxido-2,6-naphthalenedicarboxylic acid) with open metal sites was prepared and functionalized with primary or secondary diamines (en = ethylenediamine, mmen = N,N′-dimethylethylenediamine, or ppz = piperazine). The CO2 adsorption was substantial under post-combustion flue gas conditions as compared to other reported metal–organic frameworks. Interestingly, the IR spectroscopic measurements demonstrated that the CO2 adsorption mechanism is based on the combination of physisorption and chemisorption. The CO2 adsorption capacity of 1-mmen was greater than that of 1-en and 1-ppz, which can likely be attributed to the basicity of the free amine groups tethered to the open coordination sites. Ultrahigh selectivity and superior dynamic separation of CO2 over N2 were evident in 1-ppz. Such exceptional CO2 uptake and CO2/N2 selectivity of diamine-functionalized materials hold potential promise for post-combustion CO2 capture applications.

Graphical abstract: Homodiamine-functionalized metal–organic frameworks with a MOF-74-type extended structure for superior selectivity of CO2 over N2

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2015
Accepted
11 Aug 2015
First published
26 Aug 2015

J. Mater. Chem. A, 2015,3, 19177-19185

Homodiamine-functionalized metal–organic frameworks with a MOF-74-type extended structure for superior selectivity of CO2 over N2

J. S. Yeon, W. R. Lee, N. W. Kim, H. Jo, H. Lee, J. H. Song, K. S. Lim, D. W. Kang, J. G. Seo, D. Moon, B. Wiers and C. S. Hong, J. Mater. Chem. A, 2015, 3, 19177 DOI: 10.1039/C5TA02357B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements