Issue 28, 2015

VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries

Abstract

VO2 (B) is an interesting cathode candidate in lithium-ion batteries with a high theoretical capacity and fast charge/mass transfer rate. Most of the studies on this material have focused on the lithium insertion reaction in the range of 4.0–1.0 V. In this paper, VO2/rGO nanocomposite was prepared by a microwave-assisted solvothermal method and investigated in both lithium-ion and sodium-ion batteries as a potential anode. The VO2 (B) nanorods have an average diameter of ∼200 nm, and is encapsulated by reduced graphene oxide (rGO) nanosheets. Electrochemical results reveal that the VO2/rGO electrodes exhibit stable cycling and good rate performance in both Li and Na cells. Reversible capacities of 400 mA h g−1 over 400 cycles (vs. Li/Li+) and 200 mA h g−1 over 200 cycles (vs. Na/Na+) have been achieved, indicating it is potential as an anode candidate either in lithium- or sodium-ion batteries. Nevertheless, the reaction mechanisms seem to be different in Li and Na cells. The crystal structure of VO2 (B) is maintained at a low discharge potential of 0.05 V in lithium-ion cells, while phase amorphization occurs in sodium-ion cells below 0.5 V. This result is consistent with the previous study on TiO2, further confirming that some stable metal oxides may show rather different behaviors in Na cells than expected.

Graphical abstract: VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2015
Accepted
18 Jun 2015
First published
19 Jun 2015

J. Mater. Chem. A, 2015,3, 14750-14758

VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries

G. He, L. Li and A. Manthiram, J. Mater. Chem. A, 2015, 3, 14750 DOI: 10.1039/C5TA03188E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements