A novel monolithic three-dimensional graphene-based composite with enhanced electrochemical performance†
Abstract
Monolithic 3D porous graphene with a small pore size of ∼250 nm was obtained by a chemical vapor deposition method, using dealloyed nanoporous Ni as a substrate. Monolithic nanocomposites of CoO or PdCo nanoparticles decorated on the 3D porous graphene were facilely synthesized and used as an advanced anode material for lithium ion batteries or as an electrocatalyst in fuel cells, respectively. The synthesized CoO or PdCo alloy nanoparticles with narrow diameter distributions are uniformly anchored on the porous graphene inner surface. The CoO/porous graphene nanocomposite displayed a high performance in lithium ion batteries with a large reversible capacity, excellent cycling stability, and good rate performance. The PdCo/porous graphene exhibited an enhanced catalytic activity for the oxidation of ethanol compared with both Pd/porous graphene and commercial Pd/C, highlighting the importance of monolithic porous graphene in enhancing the electrochemical performance of metal and metal oxide nanoparticles.