Issue 44, 2015

Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers

Abstract

Certain metallopolymers possess the ability to close scratches by a simple thermal treatment. The present study comprehensively explores the structure–property relationship of these materials by variation of the corresponding metal salts. The scratch-healing properties are studied in detail and correlated to the rheological behavior. Rheological measurements are utilized to determine the supramolecular bond life time (τb). A crossover of G′ and G′′ is found for the scratch healing metallopolymers, whereas this is absent in materials displaying no healing under the investigated conditions. Thus, this study provides a first step for the fundamental understanding of the dynamic behavior of metallopolymers and the impact on the self-healing properties. Furthermore, the effect of the chosen cation and anion on the self-healing behavior is illustrated and studied in detail.

Graphical abstract: Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2015
Accepted
07 Sep 2015
First published
07 Sep 2015

J. Mater. Chem. A, 2015,3, 22145-22153

Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers

S. Bode, M. Enke, R. K. Bose, F. H. Schacher, S. J. Garcia, S. van der Zwaag, M. D. Hager and U. S. Schubert, J. Mater. Chem. A, 2015, 3, 22145 DOI: 10.1039/C5TA05545H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements