Issue 47, 2015

Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction

Abstract

The development of technologies for the recycling of carbon dioxide into carbon-containing fuels is one of the major challenges in sustainable energy research. Two of the main current limitations are the poor efficiency and fast deactivation of catalysts. Core–shell nanoparticles are promising candidates for enhancing challenging reactions. In this work, Au@Cu core–shell nanoparticles with well-defined surface structures were synthesized and evaluated as catalysts for the electrochemical reduction of carbon dioxide in neutral medium. The activation potential, the product distribution and the long term durability of this catalyst were assessed by electrochemical methods, on-line electrochemical mass spectrometry (OLEMS) and on-line high performance liquid chromatography. Our results show that the catalytic activity and the selectivity can be tweaked as a function of the thickness of Cu shells. We have observed that the Au cubic nanoparticles with 7–8 layers of copper present higher selectivity towards the formation of hydrogen and ethylene; on the other hand, we observed that Au cubic nanoparticles with more than 14 layers of Cu are more selective towards the formation of hydrogen and methane. A trend in the formation of the gaseous products can be also drawn. The H2 and CH4 formation increases with the number of Cu layers, while the formation of ethylene decreases. Formic acid was the only liquid species detected during CO2 reduction. Similar to the gaseous species, the formation of formic acid is strongly dependent on the number of Cu layers on the core@shell nanoparticles. The Au cubic nanoparticles with 7–8 layers of Cu showed the largest conversion of CO2 to formic acid at potentials higher than 0.8 V vs. RHE. The observed trends in reactivity and selectivity are linked to the catalyst composition, surface structure and strain/electronic effects.

Graphical abstract: Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2015
Accepted
15 Oct 2015
First published
15 Oct 2015

J. Mater. Chem. A, 2015,3, 23690-23698

Author version available

Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction

J. Monzó, Y. Malewski, R. Kortlever, F. J. Vidal-Iglesias, J. Solla-Gullón, M. T. M. Koper and P. Rodriguez, J. Mater. Chem. A, 2015, 3, 23690 DOI: 10.1039/C5TA06804E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements