Developing chemoselective and biodegradable polyester elastomers for bioscaffold application†
Abstract
Thermal polyesterification has emerged as a successful method for synthesizing polyesters for biomedical applications. However, to date, no general functionalization strategy has been incorporated into materials designed by the thermal polycondensation of polyacids and polyols. Herein, we report the design of several elastomers based on the thermal polycondensation of 4-ketopimelic acid, citric acid, and one of two diols: 1,6-hexanediol or 1,4-cyclohexanedimethanol. By varying the diol and the curing conditions, several elastomers were designed with a range of physical and mechanical properties. Poly(diol 4-ketopimelate-co-diol citrate) achieved Young's modulus, ultimate tensile stress, and rupture strain values of 0.39–1.13 MPa, 0.27–1.04 MPa, and 108–426%, respectively. Additionally, the incorporation of the ketone from 4-ketopimelic acid gave these materials two advantageous characteristics: a site for covalent functionalization through oxime formation and the ability to covalently bond to the surrounding tissue through imine linkages. Biocompatibility was studied both in vitro and in vivo in order to gain a complete understanding as to how biological systems respond to these novel materials. Based on preliminary results, we believe that poly(diol 4-ketopimelate-co-diol citrate) polyketoesters are excellent candidates for biomaterials.