Issue 10, 2015

Surface modification of titanium with curcumin: a promising strategy to combat fibrous encapsulation

Abstract

Fibrous encapsulation that prevents the direct contact between an implant and the bone can cause implant failure. However, prevention of fibrous encapsulation is difficult because of the lack of effective strategies which can selectively control the growth of fibroblasts and osteoblasts. Because curcumin, an extract from Curcuma longa, was recently found to reduce the formation of fibrous tissue, it is hypothesized that loading curcumin on implant surfaces would be efficacious in inhibiting fibrous encapsulation without adversely affecting the osteoblast functions. To prove this hypothesis, curcumin was loaded on to a titanium surface using poly(dopamine) as an anchor, and the behaviors of fibroblasts and osteoblasts on these curcumin-modified surfaces were investigated. Curcumin was successfully loaded on to titanium and showed a low release after incubation in phosphate-buffered saline for seven days. On the curcumin-modified surfaces, fibroblast proliferation was suppressed, and fibrous marker expressions as well as collagen synthesis were significantly reduced. These reductions were possibly because of the enhancement of fibroblast apoptosis induced by the surface curcumin. In contrast, no significant reduction in osteoblast functions was observed on the curcumin-modified substrates. These findings may provide a promising solution to reduce fibrous encapsulation, and thus may be highly beneficial for orthopaedic applications.

Graphical abstract: Surface modification of titanium with curcumin: a promising strategy to combat fibrous encapsulation

Supplementary files

Article information

Article type
Paper
Submitted
29 Sep 2014
Accepted
19 Jan 2015
First published
19 Jan 2015

J. Mater. Chem. B, 2015,3, 2137-2146

Author version available

Surface modification of titanium with curcumin: a promising strategy to combat fibrous encapsulation

R. He, X. Hu, H. C. Tan, J. Feng, C. Steffi, K. Wang and W. Wang, J. Mater. Chem. B, 2015, 3, 2137 DOI: 10.1039/C4TB01616E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements