Issue 35, 2015

Preparation of different sized nano-silver loaded on functionalized graphene oxide with highly effective antibacterial properties

Abstract

Graphene oxide (GO) has attracted great interest in many different areas, as a delivery vehicle for antibacterial agents, and has shown high potential. Although silver nanoparticles (AgNPs) have a strong antibacterial effect, the biological application of AgNPs is often hindered by their aggregation and low stability. In this study, we developed an approach of polyoxyethylene bis(amine) (PEG) directed AgNPs grown on GO, then we combined the two materials to prepare a series of functionalized GO bearing different sized AgNPs, and studied the size effects of AgNPs on growth inhibition of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). We evaluated the antibacterial effect of GO@PEG@AgNPs on E. coli and S. aureus by various methods such as minimum inhibitory concentration (MIC) experiment, cell wall/membrane integrity assay and scanning electron microscopy (SEM) characterisation of bacterial morphology. The GO@PEG@AgNPs composites exhibited markedly higher antibacterial efficacy than AgNPs alone. The smallest GO@PEG@AgNPs (10 nm) particularly demonstrated higher antibacterial activity than other sizes (30, 50, and 80 nm). We believe that these findings contribute to great potential application as a regulated graphene-based antibacterial solution.

Graphical abstract: Preparation of different sized nano-silver loaded on functionalized graphene oxide with highly effective antibacterial properties

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2015
Accepted
19 May 2015
First published
20 May 2015

J. Mater. Chem. B, 2015,3, 7020-7029

Preparation of different sized nano-silver loaded on functionalized graphene oxide with highly effective antibacterial properties

X. Chen, X. Huang, C. Zheng, Y. Liu, T. Xu and J. Liu, J. Mater. Chem. B, 2015, 3, 7020 DOI: 10.1039/C5TB00280J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements