Electrospun poly(l-lactide-co-caprolactone)–collagen–chitosan vascular graft in a canine femoral artery model†
Abstract
Poly(L-lactide-co-caprolactone)–collagen–chitosan (P(LLA-CL)–COL–CS) composite grafts were electrospun in this study. Based on the test results for mechanical properties, biodegradability and in vitro cellular compatibility, the optimal weight ratio of P(LLA-CL) to COL/CS was set as 3 : 1. In vivo study was further performed in a canine femoral artery model. The results showed that the 3 : 1 grafts possessed excellent structural integrity, higher patency rate, better endothelial cell (EC) and smooth muscle cells (SMC) growth, as well as higher levels of gene and protein expression of angiogenesis-related cues than those of grafts based on P(LLA-CL). The findings confirmed that the addition of natural materials, such as collagen and chitosan, could effectively improve endothelialization, SMC incursion into the tunica media, and vascular remodeling for tissue engineering.