Issue 32, 2015

MOF-templated rough, ultrathin inorganic microcapsules for enzyme immobilization

Abstract

Ultrathin titania microcapsules with rough surfaces were prepared by using a metal–organic framework (ZIF-8) as one kind of hard template to mediate the structures of the microcapsule shell. Specifically, CaCO3 particles were first coated with tannic acid (TA) followed by the deposition of hydrophobic ZIF-8 and another TA layer, the obtained particles were then assembled with protamine/TiO2 bilayers through biomimetic mineralization. Finally, the microcapsules (Z-TiO2) were obtained after simultaneously removing CaCO3 and ZIF-8 templates using ethylenediaminetetraacetic acid (EDTA). The coordination interaction between TA and ZIF-8 ensured the robust templating which endowed the microcapsules with a rough surface and an ultrathin microcapsules shell (100 nm) with 4.4 nm pore size. Moreover, the surface roughness of microcapsules can be regulated by changing the size of ZIF-8 crystals. The microcapsules were then utilized to immobilize penicillin G acylase (PGA). And PGA@Z-TiO2 retained 69% activity of equivalent free PGA with a loading capacity of 160 mg g−1. The PGA@Z-TiO2 microcapsules exhibited superior reusability: after recycling 8 times, the conversion of the enzymatic reaction remained 36.0%, which was twice higher than that of PGA@TiO2 (14.7%). Moreover, compared with free PGA and PGA@TiO2 microcapsules, PGA@Z-TiO2 microcapsules exhibited higher thermal and storage stability. After storing for 60 days, the relative activity of PGA@Z-TiO2 remained 89.6%, which was higher than that of free PGA (34.5%) and PGA@TiO2 (73.6%). ZIF-8 can be envisioned to be a novel class of hard template for preparing a broad variety of microcapsules with different hierarchical structures.

Graphical abstract: MOF-templated rough, ultrathin inorganic microcapsules for enzyme immobilization

Supplementary files

Article information

Article type
Paper
Submitted
09 May 2015
Accepted
09 Jul 2015
First published
09 Jul 2015

J. Mater. Chem. B, 2015,3, 6587-6598

Author version available

MOF-templated rough, ultrathin inorganic microcapsules for enzyme immobilization

X. Wang, J. Shi, S. Zhang, H. Wu, Z. Jiang, C. Yang, Y. Wang, L. Tang and A. Yan, J. Mater. Chem. B, 2015, 3, 6587 DOI: 10.1039/C5TB00870K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements