Issue 34, 2015

In vitro and in vivo drug release behavior and osteogenic potential of a composite scaffold based on poly(ε-caprolactone)-block-poly(lactic-co-glycolic acid) and β-tricalcium phosphate

Abstract

To cure serious bone tuberculosis, a novel long-term drug delivery system was designed and prepared to satisfy the needs of both bone regeneration and antituberculous drug therapy. An antituberculous drug (rifampicin, RFP) was loaded into a porous scaffold, which composed of a newly designed polylactone, poly(ε-caprolactone)-block-poly(lactic-co-glycolic acid) (b-PLGC) copolymer, and β-tricalcium phosphate (β-TCP). The releasing results demonstrated that RFP could be steadily released for as long as 12 weeks both in vitro and in vivo. During the in vivo experimental period, the drug concentration in tissues surrounding implants was much higher than that in blood which was still superior to the effective value to kill mycobacterium tuberculosis. MC3T3-E1 osteoblasts proliferated well in extracts and co-cultures on composite scaffolds, indicating good cytocompatibility and cell affinity of the scaffolds. The results of a rabbit radius repair experiment displayed that scaffolds have good bone regeneration capacity. The RFP-loaded b-PLGC/TCP composite scaffold thus could be envisioned to be a potential and promising substrate in clinical treatment of bone tuberculosis.

Graphical abstract: In vitro and in vivo drug release behavior and osteogenic potential of a composite scaffold based on poly(ε-caprolactone)-block-poly(lactic-co-glycolic acid) and β-tricalcium phosphate

Article information

Article type
Paper
Submitted
18 May 2015
Accepted
20 Jul 2015
First published
22 Jul 2015

J. Mater. Chem. B, 2015,3, 6885-6896

Author version available

In vitro and in vivo drug release behavior and osteogenic potential of a composite scaffold based on poly(ε-caprolactone)-block-poly(lactic-co-glycolic acid) and β-tricalcium phosphate

P. Zhao, D. Li, F. Yang, Y. Ma, T. Wang, S. Duan, H. Shen, Q. Cai, D. Wu, X. Yang and S. Wang, J. Mater. Chem. B, 2015, 3, 6885 DOI: 10.1039/C5TB00946D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements