Issue 35, 2015

Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: relevance to bone formation

Abstract

Biomimetic materials have been gaining increasing importance for use as bone biomaterials, because they may provide regenerative alternatives for the use of autologous tissues for bone regeneration. We demonstrate a promising alternative for the use of biomimetic materials based on a biodegradable PEG hydrogel loaded with vaterite nanoparticles as mineral storage. Vaterite, the least stable CaCO3 polymorph, is stable enough to ensure the presence of a potential ion buffer for bone regeneration, but still has sufficient reactivity for the transformation from CaCO3 to hydroxyapatite (HA). A combination of powder X-ray diffraction (PXRD), electron microscopy, and Fourier-transform infrared (FT-IR) and Raman spectroscopy showed the transformation of vaterite nanoparticles incorporated in a PEG-acetal-DMA hydrogel to hydroxycarbonate apatite (HCA) crystals upon incubation in simulated body fluid at human body temperature within several hours. The transformation in the PEG-acetal-DMA hydrogel scaffold in simulated body fluid or phosphate saline buffer proceeded significantly faster than for free vaterite. The vaterite-loaded hydrogels were free of endotoxin and did not exhibit an inflammatory effect on endothelial cells. These compounds may have prospects for future applications in the treatment of bone defects and bone degenerative diseases.

Graphical abstract: Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: relevance to bone formation

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2015
Accepted
27 Jul 2015
First published
27 Jul 2015

J. Mater. Chem. B, 2015,3, 7079-7089

Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: relevance to bone formation

R. Schröder, H. Pohlit, T. Schüler, M. Panthöfer, R. E. Unger, H. Frey and W. Tremel, J. Mater. Chem. B, 2015, 3, 7079 DOI: 10.1039/C5TB01032B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements