Monodisperse magnetic nanoparticle assemblies prepared at scale by competitive stabiliser desorption†
Abstract
We report a scalable and reproducible method to assemble magnetic nanoparticle clusters from oleic acid stabilised iron oxide nanoparticles. By controlling the surface coverage of oleic acid on the nanoparticle surface we have achieved controlled nanoparticle assembly following exposure of the suspension to a substrate layer of cyanopropyl-modified silica which competes for the ligand. The clusters can be formed reproducibly and their final size can be selected over a range covering almost two orders of magnitude. Most unusually, the relative monodispersity of the cluster suspension is improved compared to the starting nanoparticle suspension, and the yield is close to 100%. Interestingly, we find that the kinetics of assembly is not altered by scaling up, which is surprising for a complex process involving molecular transport. Kinetic studies provided mechanistic insight into the process, and suggested general requirements for controlled assembly of other nanoparticle types.