Issue 4, 2015

MXene nanoribbons

Abstract

Quasi-one-dimensional nanoribbons have great potential for applications in nanoelectronics and nanospintronics due to their unique quantum confinement effects. In this work, first-principles calculations are carried out to predict the stability as well as magnetic and electronic properties of MXene nanoribbons with either zigzag- or armchair-terminated edges. Three types of MXene recently realized experimentally, i.e. Ti2C, Ti3C2 and V2C, are considered to construct their corresponding MXene nanoribbons. In addition, the O-functionalized Ti2C and Ti3C2 nanoribbons are also investigated. The effect of functionalization is studied by comparing different functional groups including OH, F and O. Six zigzag and two armchair families are distinguished according to different ribbon edges. Our results show that all the investigated bare MXenes are metallic and exhibit certain magnetic moments in their ground states, irrespective of the ribbon width and ribbon type. Remarkable edge reconstructions are observed for all types of nanoribbon. We further show that hydrogen passivation can lead to the increase of the magnetic moments of Ti2C and V2C nanoribbons due to charge transfer. For O-functionalized Ti2C nanoribbons, our calculations indicate that some of them exhibit semiconducting properties dependent on edge configurations. In particular, the band gap of armchair Ti2CO2 nanoribbons with a width of 7.34 Å is found to be around 1.0 eV, which is significantly enhanced compared to the 0.4 eV of a pristine Ti2CO2 layer. The stabilities of these nanoribbons are evaluated by virtue of their binding energies, formation energies and edge energies and we show that functionalized MXene nanoribbons are more stable than bare ribbons. Our results thus provide strong evidence for the effectiveness of nanostructuring on the electronic and magnetic properties of MXenes.

Graphical abstract: MXene nanoribbons

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2014
Accepted
15 Nov 2014
First published
20 Nov 2014

J. Mater. Chem. C, 2015,3, 879-888

MXene nanoribbons

S. Zhao, W. Kang and J. Xue, J. Mater. Chem. C, 2015, 3, 879 DOI: 10.1039/C4TC01721H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements