Issue 21, 2015

Phosphine oxide-jointed electron transporters for the reduction of interfacial quenching in highly efficient blue PHOLEDs

Abstract

A series of benzimidazole–PO hybrids, PBIPO, DPBIPO and TPBIPO, with different configurations of phosphine oxide (PO)-bridged 2-phenylbenzimidazole (PBI) groups, demonstrate an effective charge–exciton separation (CES) strategy for electron-transport material (ETM) design aimed at interfacial triplet-polaron quenching (TPQ) suppression in hole-predominant phosphorescent organic light-emitting diodes (PHOLEDs). The electronic states of these materials are well-controlled by virtue of their insulating and electron-withdrawing phosphine oxide joints. Their equivalent frontier molecular orbital energy levels (−2.7 and −6.4 eV) and triplet states (3.0 eV) give them identical good electron-injecting/hole-blocking abilities and effective exciton diffusion suppression, establishing a correspondence between electron mobility and interfacial TPQ effect, and the device performance of these ETMs. Stronger interactions between TPPO groups and blue phosphor iridium(III) bis(2-(4,6-difluorophenyl)-pyridinato-N,C2′) picolinate (FIrpic) give rise to the optimized orientation of unsymmetrical PBIPO on the emissive layer (EML) to separate its charged moiety from the EML interface, effectively suppressing interfacial TPQ. Consequently, PBIPO endows its conventional FIrpic-based blue device with state-of-the-art efficiencies of 47.3 cd A−1, 36.0 lm W−1 and 22.2%, which are two- and three-fold those of the common ETM TPBI and its analogue DPBIPO, with a two orders of magnitude higher electron mobility. At 1000 cd m−2, the efficiencies of PBIPO-based devices still remained at 43.5 cd A−1 and 20.1%, making PBIPO among the most efficient high-energy-gap ETMs to date and manifesting the effectiveness of the molecular CES strategy for interfacial TPQ suppression.

Graphical abstract: Phosphine oxide-jointed electron transporters for the reduction of interfacial quenching in highly efficient blue PHOLEDs

Supplementary files

Article information

Article type
Paper
Submitted
10 Mar 2015
Accepted
21 Apr 2015
First published
21 Apr 2015

J. Mater. Chem. C, 2015,3, 5430-5439

Phosphine oxide-jointed electron transporters for the reduction of interfacial quenching in highly efficient blue PHOLEDs

W. Kan, L. Zhu, Y. Wei, D. Ma, M. Sun, Z. Wu, W. Huang and H. Xu, J. Mater. Chem. C, 2015, 3, 5430 DOI: 10.1039/C5TC00643K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements