Issue 29, 2015

A fluorescent probe with an aggregation-enhanced emission feature for real-time monitoring of low carbon dioxide levels

Abstract

Novel fluorescent probes based on the 1,2,5-triphenylpyrrole core containing a different number of tertiary amine moieties, 2-(dimethylamino)ethyl 4-(2,5-diphenyl-1H-pyrrol-1-yl)benzoate (TPP-DMAE), bis(2-(dimethylamino)ethyl) 4,4′-(1-phenyl-1H-pyrrole-2,5-diyl)dibenzoate (TPP-BDMAE) and tris(2-(dimethylamino)ethyl) 4,4′,4′′-(1H-pyrrole-1,2,5-triyl)tribenzoate (TPP-TDMAE), with an aggregation-enhanced emission (AEE) feature, were prepared for the quantitative detection of low levels of carbon dioxide in the gas mixture with the fraction of carbon dioxide ranging from 0.4% to 5%. Compared with the other two compounds, TPP-TDMAE showed the most selective, fastest and most iterative response to carbon dioxide. A significant fluorescence decrease with a turn-off ratio over 20-fold was triggered by the disaggregation process through the reaction with carbon dioxide. Response time results indicated that the emission intensity of TPP-TDMAE can be quickly decreased to the minimum level in less than 12 s upon bubbling of carbon dioxide. It is desirable to develop a novel method for the selective, real-time and quantitative detection of CO2 for biological and medical applications.

Graphical abstract: A fluorescent probe with an aggregation-enhanced emission feature for real-time monitoring of low carbon dioxide levels

Supplementary files

Article information

Article type
Paper
Submitted
06 May 2015
Accepted
22 Jun 2015
First published
22 Jun 2015

J. Mater. Chem. C, 2015,3, 7621-7626

A fluorescent probe with an aggregation-enhanced emission feature for real-time monitoring of low carbon dioxide levels

H. Wang, D. Chen, Y. Zhang, P. Liu, J. Shi, X. Feng, B. Tong and Y. Dong, J. Mater. Chem. C, 2015, 3, 7621 DOI: 10.1039/C5TC01280E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements