Issue 43, 2015

Electronic and optical properties of Er-doped Y2O2S phosphors

Abstract

In this paper, we report a detailed computational and experimental investigation of the structural, electronic and dynamic properties of undoped and Er3+-doped Y2O2S phosphors by using computational crystal field (CF) calculations and electronic density of states by density functional theory (DFT), combined with optical measurements including excitation spectra, emission spectra from X-ray, ultraviolet and near infrared (NIR) excitations, and quantum yield determination under ultraviolet and NIR excitations. Emission decays and quantum yields of the visible and NIR bands were measured for different Er3+ doping concentrations in the Er3+-doped Y2O2S phosphors. Results show that green (550 nm) and red (667 nm) emission intensity and the respective ratio of these emission intensities depend on both the excitation wavelength and the Er3+ doping concentration. Although the total emission efficiency does not appreciably depend on the excitation wavelength, the excitation wavelength that provided the highest efficiency was found to be 250 nm in these Er3+-doped Y2O2S phosphors with both 1% and 10% Er doping concentrations.

Graphical abstract: Electronic and optical properties of Er-doped Y2O2S phosphors

Supplementary files

Article information

Article type
Paper
Submitted
26 Aug 2015
Accepted
07 Oct 2015
First published
08 Oct 2015

J. Mater. Chem. C, 2015,3, 11486-11496

Electronic and optical properties of Er-doped Y2O2S phosphors

M. Pokhrel, G. A. Kumar, C.-G. Ma, M. G. Brik, B. W. Langloss, I. N. Stanton, M. J. Therien, D. K. Sardar and Y. Mao, J. Mater. Chem. C, 2015, 3, 11486 DOI: 10.1039/C5TC02665B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements