Issue 5, 2016

Unraveling near-field and far-field relationships for 3D SERS substrates – a combined experimental and theoretical analysis

Abstract

Simplicity and low cost has positioned inkjet paper- and fabric-based 3D substrates as two of the most commonly used surface-enhanced Raman spectroscopy (SERS) platforms for the detection and the identification of chemical and biological analytes down to the nanogram and femtogram levels. The relationship between far-field and near-field properties of these 3D SERS platforms remains poorly understood and warrants more detailed characterization. Here, we investigate the extremely weak optical scattering observed from commercial and home-fabricated paper-, as well as fabric-based 3D SERS substrates. Using wavelength scanned surface-enhanced Raman excitation spectroscopy (WS-SERES) and finite-difference time-domain (FDTD) calculations we were able to determine their near-field SERS properties and correlate them with morphological and far-field properties. It was found that nanoparticle dimers, trimers, and higher order nanoparticle clusters primarily determine the near-field properties of these substrates. At the same time, the far-field response of 3D SERS substrates either originates primarily from the monomers or cannot be clearly defined. Using FDTD we demonstrate that LSPR bands of nanoparticle aggregates near perfectly overlap with the maxima of the near-field surface-enhanced Raman scattering responses of the 3D SERS substrates. This behaviour of far-field spectroscopic properties and near-field surface-enhanced Raman scattering has not been previously observed for 2D SERS substrates, known as nanorod arrays. The combination of these analytical approaches provides a full spectroscopic characterization of 3D SERS substrates, while FDTD simulation can be used to design new 3D SERS substrates with tailored spectral characteristics.

Graphical abstract: Unraveling near-field and far-field relationships for 3D SERS substrates – a combined experimental and theoretical analysis

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2015
Accepted
03 Feb 2016
First published
03 Feb 2016

Analyst, 2016,141, 1779-1788

Author version available

Unraveling near-field and far-field relationships for 3D SERS substrates – a combined experimental and theoretical analysis

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz and R. P. Van Duyne, Analyst, 2016, 141, 1779 DOI: 10.1039/C5AN01921D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements