Issue 4, 2016

Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy

Abstract

Here we presented a simple, rapid and label-free surface-enhanced Raman spectroscopy (SERS) based mapping method for the detection and discrimination of Salmonella enterica and Escherichia coli on silver dendrites. The sample preparation was first optimized to maximize sensitivity. The mapping method was then used to scan through the bacterial cells adsorbed on the surface of silver dendrites. The intrinsic and distinct SERS signals of bacterial cells were used as the basis for label-free detection and discrimination. The results show the developed method is able to detect single bacterial cells adsorbed on the silver dendrites with a limit of detection as low as 104 CFU mL−1, which is two orders of magnitude lower than the traditional SERS method under the same experimental condition. The time needed for collecting a 225 points map was approximately 24 minutes. Moreover, the developed SERS mapping method can realize simultaneous detection and identification of Salmonella enterica subsp. enterica BAA1045 and Escherichia coli BL21 from a mixture sample using principle component analysis. Our results demonstrate the great potential of the label-free SERS mapping method to detect, identify and quantify bacteria and bacterial mixtures simultaneously.

Graphical abstract: Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2015
Accepted
31 Dec 2015
First published
05 Jan 2016

Analyst, 2016,141, 1356-1362

Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy

P. Wang, S. Pang, J. Chen, L. McLandsborough, S. R. Nugen, M. Fan and L. He, Analyst, 2016, 141, 1356 DOI: 10.1039/C5AN02175H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements