A metal-responsive interdigitated bilayer for selective quantification of mercury(ii) traces by surface plasmon resonance†
Abstract
Reusable surface plasmon resonance chips allowing the quantitative and selective detection of mercury(II) ions in water at the 0.01 nM level are reported. The surface-modified gold sensor consists of a rarefied self-assembled monolayer of octanethiol topped with a Langmuir–Blodgett monolayer of an amphiphilic and highly-specific chelator. The interdigitated architecture confers to the bilayer a high packing density, surface coverage, and binding-group accessibility.