Elucidating the cellular uptake mechanism of aptamer-functionalized graphene-isolated-Au-nanocrystals with dual-modal imaging†
Abstract
Elucidating the endocytosis and metabolism of nanoparticles in cells could improve the diagnostic sensitivity and therapeutic efficiency. In this work, we explore the cellular uptake mechanism of a biocompatible nanocrystal nanostructure, graphene-isolated-Au-nanocrystals (GIANs), by monitoring the intrinsic Raman and two-photon luminescence signals of GIANs in live cells. Aptamers functionalized on the GIAN nanostructure through simple, but strong, π–π interactions entered the cells through a clathrin-dependent pathway, while unmodified GIANs mainly entered the cells through a caveolae-mediated endocytosis pathway. Thus, it can be concluded that the mechanism of cellular uptake in these graphene-isolated-Au-nanocrystal nanostructures is determined by the presence or absence of aptamer modification.