Issue 14, 2016

Ion mobility spectrometry nuisance alarm threshold analysis for illicit narcotics based on environmental background and a ROC-curve approach

Abstract

The discriminative potential of an ion mobility spectrometer (IMS) for trace detection of illicit narcotics relative to environmental background was investigated with a receiver operating characteristic (ROC) curve framework. The IMS response of cocaine, heroin, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), and Δ9-tetrahydro-cannabinol (THC) was evaluated against environmental background levels derived from the screening of incoming delivery vehicles at a federal facility. Over 20 000 samples were collected over a multiyear period under two distinct sets of instrument operating conditions, a baseline mode and an increased desorption/drift tube temperature and sampling time mode. ROC curves provided a quantifiable representation of the interplay between sensitivity (true positive rate, TPR) and specificity (1 – false positive rate, FPR). A TPR of 90% and minimized FPR were targeted as the detection limits of IMS for the selected narcotics. MDMA, THC, and cocaine demonstrated single nanogram sensitivity at 90% TPR and <10% FPR, with improvements to both MDMA and cocaine in the elevated temperature/increased sampling mode. Detection limits in the tens of nanograms with poor specificity (FPR ≈ 20%) were observed for methamphetamine and heroin under baseline conditions. However, elevating the temperature reduced the background in the methamphetamine window, drastically improving its response (90% TPR and 3.8% FPR at 1 ng). On the contrary, the altered mode conditions increased the level of background for THC and heroin, partially offsetting observed enhancements to desorption. The presented framework demonstrated the significant effect environmental background distributions have on sensitivity and specificity.

Graphical abstract: Ion mobility spectrometry nuisance alarm threshold analysis for illicit narcotics based on environmental background and a ROC-curve approach

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2016
Accepted
18 May 2016
First published
18 May 2016

Analyst, 2016,141, 4438-4446

Ion mobility spectrometry nuisance alarm threshold analysis for illicit narcotics based on environmental background and a ROC-curve approach

T. P. Forbes and M. Najarro, Analyst, 2016, 141, 4438 DOI: 10.1039/C6AN00844E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements