Issue 24, 2016

Design of luciferase-displaying protein nanoparticles for use as highly sensitive immunoassay detection probes

Abstract

In this study, we developed a protein nanoparticle-based immunoassay to detect cancer biomarkers using a bioluminescent fusion protein. This method relies on the use of protein nanoparticles comprised of genetically-engineered elastin-like polypeptides (ELPs) fused with poly-aspartic acid tails (ELP-D), previously developed in our lab. The sizes of the self-assembled ELP-D nanoparticles can be regulated at the nanoscale by charged repulsion of the poly-aspartic acid chains. To improve the sensitivity of enzyme-linked immunosorbent assays (ELISAs), we herein demonstrate the multivalent display of NanoLuc® (Nluc) luciferase and a biotin acceptor peptide (BAP) on the surfaces of ELP-D nanoparticles, and demonstrate the sensitivity of these multivalent nanoparticles as detection probes. The fusion protein comprised of ELP-D and Nluc-BAP (ELP-D-Nluc-BAP) was found to form nanoparticles with Nluc and BAP displayed multivalently on their surfaces. Moreover, the use of the nanoparticles in ELISA resulted in a detection sensitivity for α-fetoprotein (AFP) about 10 times higher than that of an assay relying on the use of the monomeric version of the fusion protein. Taken together, ELP-D-based nanoparticles displaying multivalent luciferases on their surfaces enable the construction of an ELISA with enhanced sensitivity.

Graphical abstract: Design of luciferase-displaying protein nanoparticles for use as highly sensitive immunoassay detection probes

Article information

Article type
Paper
Submitted
01 Jun 2016
Accepted
01 Nov 2016
First published
02 Nov 2016
This article is Open Access
Creative Commons BY-NC license

Analyst, 2016,141, 6557-6563

Design of luciferase-displaying protein nanoparticles for use as highly sensitive immunoassay detection probes

Y. Ikeda, Y. Mashimo, M. Mie and E. Kobatake, Analyst, 2016, 141, 6557 DOI: 10.1039/C6AN01253A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements