Carbon materials for the electrooxidation of nucleobases, nucleosides and nucleotides toward cytosine methylation detection: a review
Abstract
Improved analytical methods for the determination of the degree of methylation of DNA are of vital relevance, as they may enable the detection of certain diseases, such as carcinomas and infertility, in the early stages of development. Among the analytical methods for the detection and quantification of epigenetic modifications in DNA, electroanalytical platforms are emerging as potential feasible tools for clinical purposes. This review describes the fundamentals of the electrochemical responses of nucleobases, nucleosides, nucleotides and DNA in general from the pioneering studies at mercury electrodes to the most recent studies during the last two decades. Concerning these latter studies, we will exclusively focus on carbonaceous electrodes such as carbon, graphite, glassy carbon, boron-doped diamond, carbon nanofibers, carbon nanotubes and graphene. This review will also provide an overview of the feasibility of the development of electrochemical sensors for the simultaneous determination and quantification of naturally occurring DNA bases and nucleotides as well as the methylation of cytosine in DNA using carbon materials.