Issue 92, 2016

Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2′-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro

Abstract

Antisense oligonucleotide (AO) mediated exon skipping has been widely explored as a therapeutic strategy for several diseases, in particular, for rare genetic disorders such as Duchenne muscular dystrophy (DMD). To date, the potential of anhydrohexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA) and altritol nucleic acid (ANA) has not been explored in exon skipping. For the first time, in this study we designed and synthesised HNA, CeNA and ANA-modified 2′-O-methyl (2′-OMe) mixmer AOs on a phosphorothioate (PS) backbone, and evaluated their potential to induce exon 23 skipping in mdx mouse myotubes, as a model system. Our results clearly showed that all three AO candidates modified with HNA, CeNA and ANA could efficiently induce Dmd exon 23 skipping in vitro in parallel to the fully modified 2′-OMePS AO with reduced dual exon 22/23 skipping. In addition, they showed high nuclease resistance and no cytotoxicity compared to the 2′-OMePS AO, demonstrating the applicability of HNA, CeNA and ANA nucleotide-modified AOs in exon skipping.

Graphical abstract: Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2′-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro

Supplementary files

Article information

Article type
Communication
Submitted
12 Sep 2016
Accepted
20 Oct 2016
First published
21 Oct 2016

Chem. Commun., 2016,52, 13467-13470

Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and D-altritol nucleic acid-modified 2′-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro

B. T. Le, S. Chen, M. Abramov, P. Herdewijn and R. N. Veedu, Chem. Commun., 2016, 52, 13467 DOI: 10.1039/C6CC07447B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements