Issue 29, 2016

Copper(i)–lanthanide(iii) heterometallic metal–organic frameworks constructed from 3-(3-pyridyl)acrylic acid: syntheses, structures, and properties

Abstract

The first employment of 3-(3-pyridyl)acrylic acid (3-HPYA) in 3d–4f coordination chemistry is reported. Hydrothermal reactions of 3-HPYA with lanthanide oxides and copper halides led to the formation of 17 novel copper(I)–lanthanide(III) heterometallic coordination compounds with four structural types, namely, [Ln(3-PYA)3Cu3Cl3(H2O)2]·H2O [Ln = Dy (1), Eu (2), Gd (3), Tb (4)] (I), [Ln(3-PYA)3CuI(H2O)2]·0.5H2O [Ln = Dy (5), Gd (6), Tb (7), Sm (8)] (II), [Ln(3-PYA)3CuBr(H2O)2xH2O [Ln = La (9), Eu (10), x = 1; Sm (11), Nd (12), x = 0.5] (II), [LnCu2(3-PYA)2I2(ox)0.5(H2O)2]·(H2O)2 [Ln = Eu (13), Gd (14), Nd (15)] (III) and [LnCu2(3-PYA)2Br2(ox)0.5(H2O)]·(H2O) [Ln = Gd (16), Tb (17)] (IV) (ox = oxalate). These compounds were thoroughly characterized by single crystal and powder X-ray diffraction, as well as elemental analyses, FT-IR spectroscopy and thermal studies. All the compounds are constructed from halide-containing copper–inorganic motifs and Ln-containing motifs. Compounds of type I are constructed from 1D zigzag Dy–organic chains with [Cu6Cl6] ladder-like clusters, exhibiting a 2D binodal (5, 6)-connected topology. An unusual chemical rearrangement from [Cu6Cl6] to [Cu2Br2]/[Cu2I2] clusters occurs in the formation of type II structures. They are isostructural and exhibit a 3D coordination framework based on dinuclear [Dy2O2] subunits and [Cu2Br2]/[Cu2I2] clusters as nodes, possessing a binodal (4, 6)-connected net. In the type III structure, the Ln–organic motifs propagate along the b-axis, while the Cu–inorganic motifs propagate in the perpendicular direction along the a-axis, both of which are further interconnected to give unique 3D (3, 3, 4, 4, 6)-connected nets with {42·6}2{42·82·1010·12}{43·62·8}4{43}2 topologies. The type IV structure, based on structural analysis results, features a non-interpenetrated 3D coordination framework containing 2D Ln–organic layers and Cu2Br2 chains with a new 5-nodal (3, 3, 4, 4, 8)-connected topology net (point symbol: {42·6}2{43·63}4{43}2{46·610·810·102}). Our present work represents the first example of heterometallic Cu(I) halide–Ln(III)–organic frameworks utilizing 3-HPYA as an organic ligand. The diversity of the products demonstrates that the anion, pH value and reaction temperature have significant effects on the construction of the structures. Moreover, the photoluminescence properties of 2, 4, 7, 10, 12, 13, and 15 and the magnetic properties of 1, 5, and 16 were investigated.

Graphical abstract: Copper(i)–lanthanide(iii) heterometallic metal–organic frameworks constructed from 3-(3-pyridyl)acrylic acid: syntheses, structures, and properties

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2016
Accepted
06 Jun 2016
First published
06 Jun 2016

CrystEngComm, 2016,18, 5547-5561

Copper(I)–lanthanide(III) heterometallic metal–organic frameworks constructed from 3-(3-pyridyl)acrylic acid: syntheses, structures, and properties

R. Dong, X. Chen, X. Cui, S. Chen, M. Shen, C. Li, Q. Li, M. Hu, L. Huang and H. Deng, CrystEngComm, 2016, 18, 5547 DOI: 10.1039/C6CE00637J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements