Issue 21, 2016

Synthesis of BiOBr/WO3 p–n heterojunctions with enhanced visible light photocatalytic activity

Abstract

A prerequisite for the development of photocatalysis techniques is to obtain photocatalysts with remarkable activity. Herein, we have reported BiOBr/WO3 p–n heterojunctions as novel and efficient visible-light-driven photocatalysts. The BiOBr/WO3 p–n heterojunctions have been prepared through an electrospinning–calcination–solvothermal method, and they all present a flower-like superstructure. The photocatalytic activities of these p–n heterojunctions are investigated by degrading rhodamine B (RhB), methyl orange (MO) and para-chlorophenol (4-CP) under visible light irradiation (λ > 400 nm), respectively. When RhB serves as the target pollutant, all BiOBr/WO3 p–n heterojunctions with different theoretical molar ratios of BiOBr and WO3 (1/0.5, 1/1, 1/2) exhibit higher photocatalytic activity than pure WO3 or BiOBr. Especially, the BiOBr/WO3 p–n heterojunction with a molar ratio of 1/1 displays the highest photocatalytic activity among all the as-synthesized catalysts, even higher than the activity from the mixture of two individual photocatalysts with the same weight of components (WO3 and BiOBr). In addition, when MO or 4-CP acts as the target pollutant, the BiOBr/WO3 p–n heterojunction with a molar ratio of 1/1 still exhibits excellent photocatalytic performance. Furthermore, the recycling experiment confirms that the BiOBr/WO3 p–n heterojunction is essentially stable during the photocatalytic process. The enhanced photocatalytic activity of the BiOBr/WO3 p–n heterojunction is predominantly attributed to the efficient separation of photogenerated electrons and holes. The photogenerated holes (h+) and superoxide radical anions (˙O2) have been found to be the primary reactive species responsible for the nearly complete mineralization of RhB dye in water.

Graphical abstract: Synthesis of BiOBr/WO3 p–n heterojunctions with enhanced visible light photocatalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2016
Accepted
26 Apr 2016
First published
26 Apr 2016

CrystEngComm, 2016,18, 3856-3865

Synthesis of BiOBr/WO3 p–n heterojunctions with enhanced visible light photocatalytic activity

J. Zhang, L. Zhang, X. Shen, P. Xu and J. Liu, CrystEngComm, 2016, 18, 3856 DOI: 10.1039/C6CE00824K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements