Tailoring the surface-oxygen defects of a tin dioxide support towards an enhanced electrocatalytic performance of platinum nanoparticles†
Abstract
Tin-dioxide nanofacets (SnO2 NFs) are crystal-engineered so that oxygen defects on the maximal {113} surface are long-range ordered to give rise to a non-occupied defect band (DB) in the bandgap. SnO2 NFs-supported platinum-nanoparticles exhibit an enhanced ethanol-electrooxidation activity due to the promoted charge-transport via the DB at the metal–semiconductor interface.