Issue 3, 2016

Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study

Abstract

The interactions of sodium diclofenac drug (s-DCF) with different graphene species were investigated using both first principles calculations based on Density Functional Theory (DFT) and adsorption experiments. Through batch adsorption experiments, it was found that rGO was a good adsorbent for removing the s-DCF drug from aqueous solutions. The general-order kinetic model shows the best fit to the experimental data compared with pseudo-first order and pseudo-second order kinetic adsorption models. The equilibrium data (at 25 °C) were fitted to the Liu isotherm model. The maximum sorption capacity for adsorption of the s-DCF drug was 59.67 mg g−1 for rGO. The s-DCF adsorption onto pristine graphene, graphene with a vacancy, reduced oxide graphene (rGO) and functionalized graphene nanoribbons were simulated providing a good understanding of the adsorption process of this molecule on graphene-family surfaces. The results predict a physisorption regime in all cases. Based on these results, the ab initio calculations and the adsorption experiments point out that the graphene-family are promising materials for extracting s-DCF from wastewater effluents.

Graphical abstract: Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study

Supplementary files

Article information

Article type
Paper
Submitted
03 Oct 2015
Accepted
20 Nov 2015
First published
23 Nov 2015

Phys. Chem. Chem. Phys., 2016,18, 1526-1536

Author version available

Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study

I. M. Jauris, C. F. Matos, C. Saucier, E. C. Lima, A. J. G. Zarbin, S. B. Fagan, F. M. Machado and I. Zanella, Phys. Chem. Chem. Phys., 2016, 18, 1526 DOI: 10.1039/C5CP05940B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements