Cyclodextrin induced controlled delivery of a biological photosensitizer from a nanocarrier to DNA†
Abstract
In this article, we have addressed to a demanding physicochemical aspect of therapeutic and drug research. We have reported a simple yet prospective technique that can be exploited for the controlled delivery of drugs and/or bioactive small molecules to the most relevant biomolecular target DNA. Exploiting various steady state and time resolved spectroscopic techniques together with the DNA helix melting study, we have shown that a biologically significant photosensitizer, namely, phenosafranin (PSF), can be quantitatively transferred to the DNA from the micellar nanocarrier made up of sodium tetradecyl sulfate (STS) using the external stimulant β-cyclodextrin (β-CD). The complexation property of β-CD with the nanocarrier (STS) has been utilized for the controlled release of the probe from the micelle to the DNA. Non-toxicity of the stimulant and the noninvasive nature of the carrier towards the target are expected to add to the suitability of this approach from a clinical perspective.