Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties†
Abstract
A simple, effective and green bottom-up method for the synthesis of highly fluorescent N doped graphene oxide quantum dots (GOQDs) and polymer-like quantum dots (PQDs) was developed on the basis of rapid one-step microwave assisted pyrolysis of citric acid (CA) and diethylenetriamine (DETA) in different reaction solvents. Both one-photon-induced and two-photon-induced photoluminescence (PL) properties of the resultant GOQDs and PQDs were characterized and analyzed. The one-photon-induced PL quantum yields (QY) of GOQDs and PQDs reached 39.8 and 74.0%, respectively, which are high enough to exhibit strong photoluminescence (PL) emission even under daylight excitation. The origin of the PL behavior and PL quenching mechanism was explored in terms of the interaction between the functional groups on the surfaces of GOQDs or PQDs and Hg2+. Furthermore, due to the excellent selectivity and sensitivity of the GOQDs and PQDs to Hg2+, the quantum dots might be used for quantitative detection of Hg2+ in aqueous solution.