Inverted hybrid CdSe–polymer solar cells adopting PEDOT:PSS/MoO3 as dual hole transport layers†
Abstract
Inverted CdSe quantum dots (QDs):poly (3-hexylthiophene) (P3HT) organic/inorganic hybrid solar cells (OIHSCs) with the PEDOT:PSS/MoO3 dual hole transport layers (HTLs) showed superior performance over those with a single HTL of PEDOT:PSS or MoO3. The enhanced electron blocking at the active layer/anode interface as well as the prevention of leakage current accounted for the enhancement in the efficiency of the solar cells with the dual HTLs. By adopting the inverted structure and using the dual HTLs, the resistive losses of the CdSe QDs:P3HT hybrid system at high illumination power were effectively prevented. Further study showed the structure of dual HTLs was applicable to the solar cells with CdSe QDs and nanorods (NRs) blended with poly(thienothiophene-co-benzodithiophenes)7-F20 (PTB7-F20).