Electronic and transport properties of the (VBz)n@MoS2NT nanocable
Abstract
The electronic structure of a novel inorganic (8, 8) MoS2 nanotube nanocable, (VBz)n@MoS2NT, (where Bz refers as C6H6), is investigated using density functional theory. Transport property calculations are further performed employing non-equilibrium Green's function methods by modeling a two-probe device with a finite-sized nanocable sandwiched between two electrodes of its own. It is found that the transport properties of the nanocable agree well with its electronic structure. The core (VBz)n nanowire in the (VBz)n@MoS2NT plays a significant role in electron transportation, meanwhile, the sheath MoS2NT also participates in electron transportation. This phenomenon is different from those of (VBz)n@CNT and (VBz)n@BNNT nanocables. For the (VBz)n@CNT, the transport properties are majorly dominated by the metallic CNT sheath, while for the (VBz)n@BNNT, it is merely decided by the core (VBz)n. The conductivity of the (VBz)n@MoS2NT is slightly better in comparison with pure (VBz)n. Similar to pure (VBz)n, the (VBz)n@MoS2NT shows spin-polarized transport properties: the spin-down state gives a higher conductivity than the spin-up state. The values of the spin filter efficiency of the (VBz)n@MoS2NT can be up to >80%, indicating it to be a good candidate for spin filters. In addition, it is also found that encapsulating (VBz)n into the MoS2NT could introduce magnetism. More importantly, the ferromagnetic (VBz)n@MoS2NT is thermally rather stable. Therefore, encapsulating (VBz)n into the MoS2NT can effectively tune the electronic and transport properties for exploring novel functional nanodevices.