Issue 16, 2016

Nucleophilic substitution by amide nitrogen in the aromatic rings of [zn − H]˙+ ions; the structures of the [b2 − H − 17]˙+ and [c1 − 17]+ ions

Abstract

Peptide radical cations that contain an aromatic amino acid residue cleave to give [zn − H]˙+ ions with [b2 − H − 17]˙+ and [c1 − 17]+ ions, the dominant products in the dissociation of [zn − H]˙+, also present in lower abundance in the CID spectra. Isotopic labeling in the aromatic ring of [Yπ˙GG]+ establishes that in the formation of [b2 − H − 17]˙+ ions a hydrogen from the δ-position of the Y residue is lost, indicating that nucleophilic substitution on the aromatic ring has occurred. A preliminary DFT investigation of nine plausible structures for the [c1 − 17]+ ion derived from [Yπ˙GG]+ shows that two structures resulting from attack on the aromatic ring by oxygen and nitrogen atoms from the peptide backbone have significantly better energies than other isomers. A detailed study of [Yπ˙GG]+ using two density functionals, B3LYP and M06-2X, with a 6-31++G(d,p) basis set gives a higher barrier for attack on the aromatic ring of the [zn − H]˙+ ion by nitrogen than by the carbonyl oxygen. However, subsequent rearrangements involving proton transfers are much higher in energy for the oxygen-substituted isomer leading to the conclusion that the [c1 − 17]+ ions are the products of nucleophilic attack by nitrogen, protonated 2,7-dihydroxyquinoline ions. The [b2 − H − 17]˙+ ions are formed by loss of glycine from the same intermediates involved in the formation of the [c1 − 17]+ ions.

Graphical abstract: Nucleophilic substitution by amide nitrogen in the aromatic rings of [zn − H]˙+ ions; the structures of the [b2 − H − 17]˙+ and [c1 − 17]+ ions

Supplementary files

Article information

Article type
Paper
Submitted
19 Jan 2016
Accepted
04 Mar 2016
First published
08 Mar 2016

Phys. Chem. Chem. Phys., 2016,18, 11168-11175

Nucleophilic substitution by amide nitrogen in the aromatic rings of [zn − H]˙+ ions; the structures of the [b2 − H − 17]˙+ and [c1 − 17]+ ions

X. Mu, J. K. Lau, C. Lai, K. W. M. Siu, A. C. Hopkinson and I. K. Chu, Phys. Chem. Chem. Phys., 2016, 18, 11168 DOI: 10.1039/C6CP00405A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements