Issue 14, 2016

Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2

Abstract

This paper mainly focuses on the synergistic effect of Sn and N dopants to enhance the photocatalytic performance of anatase TiO2 under visible light or simulated solar light irradiation. The Sn and N co-doped TiO2 (SNT-x) photocatalysts were successfully prepared by the facile sol–gel method and the post-nitridation route in the temperature range of 400–550 °C. All the as-prepared samples were characterized in detail by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, X-ray photoelectron and electron spin resonance spectroscopy and photoelectrochemical measurements. The characterization results reveal that the co-incorporation of Sn and N atoms remarkably modifies the electronic structure of TiO2, which gives rise to a prominent separation of photogenerated charge carriers and more efficient interfacial charge-transfer reactions in a photocatalytic process. The enhanced photocatalytic activity is attributed to the intensified active oxygen species including hydroxyl radicals (˙OH) and superoxide anion radicals (O2˙) for degradation of organic pollutants. And the result of photocatalytic hydrogen production further confirms the existence of the synergistic effect in the SNT-x samples, because they exhibit higher photocatalytic activity than the sum of N/TiO2 and Sn/TiO2. This work provides a paradigm to consolidate the understanding of the synergistic effect of metal and non-metal co-doped TiO2 in domains of photocatalysis and photoelectrochemistry.

Graphical abstract: Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2

Supplementary files

Article information

Article type
Paper
Submitted
27 Jan 2016
Accepted
07 Mar 2016
First published
08 Mar 2016

Phys. Chem. Chem. Phys., 2016,18, 9636-9644

Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2

H. Zhuang, Y. Zhang, Z. Chu, J. Long, X. An, H. Zhang, H. Lin, Z. Zhang and X. Wang, Phys. Chem. Chem. Phys., 2016, 18, 9636 DOI: 10.1039/C6CP00580B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements