Measurement of a new parameter representing the gas transport properties of the catalyst layers of polymer electrolyte fuel cells
Abstract
The optimization of the catalyst layers is necessary for obtaining a better fuel cell performance and reducing fuel cell cost. Although the ionomer coverage of the Pt catalyst is said to be a key parameter in this regard, the proportion of Pt either directly or indirectly covered by the ionomer is thought to be an important parameter with regard to gas transport (indirectly covered Pt: its gas transport paths are completely blocked by the ionomer even if it does not directly cover Pt). In this study, a new technique has been developed for evaluating the proportion of Pt covered indirectly or directly by the ionomer, which is defined as the “capped proportion”, based on the carbon monoxide (CO) adsorption properties at different temperatures. The validity of the method was thoroughly examined by identifying the CO adsorption properties of the components of the catalyst layers. The capped proportion and oxygen transport resistance in the catalyst layers showed a good correlation, indicating that the capped proportion is a dominant factor of oxygen transport resistance. This technique thus enables the evaluation of the dominant factor of the gas transport properties of the catalyst layers. The method has another significant advantage in that it does not require a membrane electrode assembly, let alone electrochemical measurement, which should be helpful for catalyst layer optimization.