Achieving high resolution and optimizing sensitivity in spatial frequency encoding NMR spectroscopy: from theory to practice†
Abstract
A detailed analysis of NMR spectra acquired based on spatial frequency encoding is presented. A theoretical model to simulate gradient encoded pulses is developed in order to describe the spatial properties of the NMR signals that are locally created throughout the sample. The key features that affect the efficiency of the slice selection process during excitation as well as refocusing pulses are investigated on a model ABX spin system, both theoretically and experimentally. It is shown that the sensitivity and resolution of the pure shift and J-edited experiments based on a spatial frequency encoding can be optimized to a point where high-resolution techniques based on a spatial frequency encoding approach show optimal performance compared to other methods.