Polymorphism in α-sexithiophene crystals: relative stability and transition path†
Abstract
We present a joint theoretical and experimental study to investigate polymorphism in α-sexithiophene (6T) crystals. By means of density-functional theory calculations, we clarify that the low-temperature phase is favorable over the high-temperature one, with higher relative stability up to 50 meV per molecule. This result is in agreement with our thermal desorption measurements. We also propose a transition path between the high- and low-temperature 6T polymorphs, estimating an upper bound for the energy barrier of about 1 eV per molecule. The analysis of the electronic properties of the investigated 6T crystal structures complements our study.