Issue 23, 2016

Variation in the c-axis conductivity of multi-layer graphene due to H2 exposure

Abstract

The variation of the c-axis conductivity of a multilayer graphene (MLG) as a function of H2 pressure from vacuum to 20 bar has been investigated. MLG was connected to the electrodes vertically using a wet transfer process. After exposure to H2 gas pressure up to 20 bar, the chemisorption of dissociated atomic hydrogen on MLG affects its electrical and structural properties. The formation of C–H bonds causes a decoupling of graphene layers, and then interferes with charge transfer through the out of plane. As a result, the c-axis conductivity decreases. Furthermore, the electron doping effect and the decoupling of the layers were confirmed using Raman spectroscopy. Hydrogenated carbons induce a defect structure of MLG which results in the expansion of layers. We observed a 43.54% increase in the thickness of the MLG after H2 exposure using atomic force microscopy.

Graphical abstract: Variation in the c-axis conductivity of multi-layer graphene due to H2 exposure

Article information

Article type
Communication
Submitted
15 Mar 2016
Accepted
20 May 2016
First published
20 May 2016

Phys. Chem. Chem. Phys., 2016,18, 15514-15518

Variation in the c-axis conductivity of multi-layer graphene due to H2 exposure

J. Kim, C. H. Kwak, W. Jung, Y. S. Huh and B. H. Kim, Phys. Chem. Chem. Phys., 2016, 18, 15514 DOI: 10.1039/C6CP01745B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements