Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers†
Abstract
Increasing evidence indicates that carbon nanoparticles (CNPs), which mainly originate from incomplete combustion of fossil fuels, have an adverse impact on the respiratory system. Recent in vivo experiments have shown that the pulmonary toxicity of CNPs is attributed to their aggregation in pulmonary surfactant monolayers (PSMs) while the underlying mechanism of aggregation remains unclear. Here, by performing coarse grained molecular dynamics simulations, we demonstrate for the first time that the aggregation of carbon nanospheres (CNSs) in PSMs is in fact size-dependent and mediated by lipid extractions. Upon CNS deposition, neighbouring lipid molecules are extracted from PSMs to cover CNSs from the top side. The extracted lipids induce clustering of CNSs to maximize the CNS–lipid interaction, by forming inverse micelles to wrap the aggregated CNSs cooperatively. The formed CNS clusters perturb the molecule structure of the PSM and thus affect its biofunction on respiration. Our simulations show that during the expiration process, CNSs form clusters that perturb the mechanical properties of the PSM in a manner depending on the CNS size. With deep inspiration, a high concentration of large CNSs may induce PSM rupture and thus have a potential impact on its biophysical properties.