Issue 31, 2016

Automatic mechanism generation for pyrolysis of di-tert-butyl sulfide

Abstract

The automated Reaction Mechanism Generator (RMG), using rate parameters derived from ab initio CCSD(T) calculations, is used to build reaction networks for the thermal decomposition of di-tert-butyl sulfide. Simulation results were compared with data from pyrolysis experiments with and without the addition of a cyclohexene inhibitor. Purely free-radical chemistry did not properly explain the reactivity of di-tert-butyl sulfide, as the previous experimental work showed that the sulfide decomposed via first-order kinetics in the presence and absence of the radical inhibitor. The concerted unimolecular decomposition of di-tert-butyl sulfide to form isobutene and tert-butyl thiol was found to be a key reaction in both cases, as it explained the first-order sulfide decomposition. The computer-generated kinetic model predictions quantitatively match most of the experimental data, but the model is apparently missing pathways for radical-induced decomposition of thiols to form elemental sulfur. Cyclohexene has a significant effect on the composition of the radical pool, and this led to dramatic changes in the resulting product distribution.

Graphical abstract: Automatic mechanism generation for pyrolysis of di-tert-butyl sulfide

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2016
Accepted
11 Jul 2016
First published
12 Jul 2016

Phys. Chem. Chem. Phys., 2016,18, 21651-21658

Author version available

Automatic mechanism generation for pyrolysis of di-tert-butyl sulfide

C. A. Class, M. Liu, A. G. Vandeputte and W. H. Green, Phys. Chem. Chem. Phys., 2016, 18, 21651 DOI: 10.1039/C6CP02202B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements